

xxxx paper #, TBD by IEEE

1

Julia Programming Language Benchmark Using a

Flight Simulation
Ray Sells

DESE Research, Inc./Jacobs Space Exploration Group
Guidance, Navigation, and Mission Analysis

NASA-MSFC EV 42
harold.r.sells@nasa.gov

Abstract—Julia’s goal to provide scripting language ease-of-

coding with compiled language speed is explored. The runtime

speed of the relatively new Julia programming language is

assessed against other commonly used languages including

Python, Java, and C++. An industry-standard missile and

rocket simulation, coded in multiple languages, was used as a

test bench for runtime speed. All language versions of the

simulation, including Julia, were coded to a highly-developed

object-oriented simulation architecture tailored specifically for

time-domain flight simulation. A “speed-of-coding” second-

dimension is plotted against runtime for each language to

portray a space that characterizes Julia’s scripting language

efficiencies in the context of the other languages. With caveats,

Julia runtime speed was found to be in the class of compiled or

semi-compiled languages. However, some factors that affect

runtime speed at the cost of ease-of-coding are shown. Julia’s

built-in functionality for multi-core processing is briefly

examined as a means for obtaining even faster runtime speed.

The major contribution of this research to the extensive

language benchmarking body-of-work is comparing Julia to

other mainstream languages using a complex flight simulation

as opposed to benchmarking with single algorithms.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. BENCHMARK DESCRIPTION.............................. 2

3. PRIOR FINDINGS ... 2
4. JULIA EXPERIMENTATION 3
5. BENCHMARK RESULTS 5

6. CONCLUSIONS ... 7
REFERENCES ... 7

BIOGRAPHY .. 8

1. INTRODUCTION

Julia [1] is a relatively new computer language that aims to

reduce the challenge for math-modelers to develop fast

computer tools and simulations. It potentially combines the

ease-of-coding feature of scripting languages (like Python)

with the performance of compiled languages (like C++).

Normally, these two features are mutually exclusive with

existing, conventional programming languages. Julia’s

ease-of-coding principally derives from its dynamic typing

feature, where data are inferred “on-the-fly” without the

necessity (code and complexity) for static data declaration.

The dynamic feature is most commonly associated with

scripting languages. Syntactically, Julia somewhat

resembles Python, but is not meant to be a “compiled

Python.” A key question for Julia application to the

simulation domain is, “Can Julia, with its obvious coding

simplicity, attain runtime speeds comparable to

conventional compiled languages for flight simulation?”

A wide body of literature exists for Julia benchmarking.

Benchmarking is not as objective as many would accept it to

be. For instance, benchmarks between different languages

can be masked or misleading due to inconsistent code

architecture or different styles of coding. Also, it is a

coder’s prerogative on how to utilize a language’s features

for a particular problem. The literature contains many

excellent language benchmarking sources that recognize the

subjectivity of benchmarking and attempt to address it in a

fair manner. One of the original and most prominent

benchmarks was performed by Bagley [2]. A wide variety

of languages (but not Julia) were benchmarked across

several code tests. The code tests were comprised of

algorithms spanning a wide domain of operation from

sorting, string manipulation, floating point computations,

and hashes, among many others. Notably, the source code

is included for all tests (in all languages). Following in this

pattern, The Computer Language Benchmarks Game [3] is a

more recent and similar presentation that includes Julia.

Notably, multiple code submissions for a benchmark in the

same language from different contributors are catalogued in

a fair attempt to capture code with the fastest speed.

Kouatchou (the “NASA Modeling Guru”) [4] maintains a

comprehensive set of benchmark results where the

algorithm tests tend more exclusively toward a scientific

interest. This is reflected in the languages tested including

Python, Julia, Matlab, and R. R Beats Python! [5] is an

example of how benchmarks can be interpreted differently.

Some “unfair timing comparisons” by “the Julia group” are

contested because the “R code was not vectorized.” A

takeaway from this body-of-work review, fairness not

withstanding, is that most of the benchmarks were

characterized by single algorithms being executed in tight

loops. While these benchmarks are certainly informative for

flight simulation coding, extrapolation of their results to

large scale flight simulation execution speed is not

straightforward.

 2

Beyond basic algorithmic benchmarks, the literature

contains several favorable Julia benchmarks for problem

domains easily vectorized, like “field” problems for

numerical solution of partial differential equations. These

type of computations are typically found in the high speed

computing domain. Eadline [6] makes the case for Julia as

an ideal solution for this type of computing. Gutierrez [7]

emphasizes Julia’s built-in primitives for parallel computing

including vectorization. However, flight simulations

typically involve the execution of sequentially-dependent

calculations inside a state-propagation loop. This type of

computation does not lend itself well to vectorization.

Consequently, the literature review for Julia benchmarking

revealed a gap in addressing Julia for time-domain, lumped-

element dynamic computations typical for flight simulation.

This paper begins describing how a unique combination of

existing elements have been employed to address this

relatively sparse area of the Julia benchmark research. An

extensively documented object-oriented simulation

architecture, its implementation in an industry standard

rocket flight simulation, and separate versions (C++, Java,

and Python) provide the setting for a comparative evaluation

of Julia runtime speed (and ease of coding). This

combination of existing elements avoids a common pitfall

of benchmarks: Benchmarks between different languages

can be masked or misleading due to inconsistent code

architecture or different styles of coding. Thus, a common

architecture and flight application provides for an accurate

and fair comparison.

Execution speeds for a Julia-version of the rocket simulation

are presented for a variety of runtime scenarios including

single-run and various increments of “batch” runs

comprised of several executions. These are compared

against their C++, Java, and Python simulation counterparts.

Recognizing runtime speed must be examined in the larger

context of ease-of-coding, metrics for the relationship

between these two criteria are shown for each of the

language implementations. A comparison of lines-of-code

is included, for instance. Also, key Julia benchmark caveats

are noted that reflect a usability and runtime speed tradeoff.

The paper concludes with a brief experiment addressing

Julia runtime speed in a multi-core, parallel computing

context. Although not in the original scope of this research,

Julia makes parallel computation very accessible to

simulation practitioners without requiring a high degree of

computer expertise. In keeping with the objective to

achieve high runtime speed complemented with easy

coding, Julia parallel computation was briefly explored with

independent rocket simulations executing on multiple cores.

2. BENCHMARK DESCRIPTION

Aerospace flight simulation is a large domain within the

digital simulation world and a large potential audience for

Julia application. Within this domain, it was recognized that

a simulation for experimentation was available. The Mini-

Rocket simulation [8] is coded in several language versions

which are in active use. Mini-Rocket is open-source [9].

Mini-Rocket (MR) is a very easy-to-configure, multiple

degree-of-freedom missile and rocket fly-out model that

accurately generates trajectories in three-dimensional space,

including maneuver characteristics. It features a unique

algorithm that accurately models missile dynamics at a

fraction of the computational cost of conventional six

degree-of-freedom simulations while maintaining a

significant amount of the fidelity. The program is ideal for

those analyses requiring trajectory modeling without the

necessity of detailed modeling of the onboard missile

subsystems. Some of its more detailed features are

summarized in Table 1.

Table 1. Mini-Rocket Features

Feature

 Osculating-plane formulation [10] reduces compute-

time overhead of full six degree-of-freedom equations-

of-motion

 Motion in three-dimensional space

 Two independent channels (pitch and yaw) for steering

and guidance

 1, 2, and 3-dimensional table lookups to model

aerodynamics and propulsion characteristics

 Capability to model angle-of-attack variations in lift

and drag

 Constraints on lateral acceleration based on angle-of-

attack and closed-loop airframe response time

 Detailed models for control and guidance subsystems

not required

Key to this benchmark, all language versions of MR have

been coded to the same object-oriented architecture. An

object-oriented simulation kernel (OSK) [11] successively

executes sequences of model objects inside a differential

equation (DE) engine. A long, traceable heritage of

comparisons exists to establish the accuracy of the MR

model and coding mechanizations [8, Section 5] in its

different language instantiations.

3. PRIOR FINDINGS

The C++, Java, and Python MR simulations have been

previously benchmarked [12]. It is informative to review

those findings here before proceeding. The OSK

architecture was used to build simulation engines in C++,

Java, and Python owing to unique user and stakeholder

requirements that had a language preference. Also, these

languages span a range of syntax simplicity versus runtime

speed and they are all object-oriented. Key features of each

language are shown in Table 2. This was a good

opportunity to explore different facets of the languages as

their functionality was expressed in different ways to build

MR.

 3

Table 2. Key Characteristics of Benchmark Languages

Language Characteristic

C++

 Fast Execution

 Most syntactically complex

 Object-Oriented

Java

 Simpler syntax

 Compiles to slower byte-code, but still

fast

 Object-oriented

Python

 Most syntactically concise, easiest to

code

 Interpreted – no need for compilation

but slower execution

 Dynamic-typing reduces lines of code

 Object-oriented

Figure 1 illustrates the trade between these languages for

MR. Identical MR models, in the sense of having the same

math models and coding architecture, were executed to

generate a representative trajectory. Runtime speed results

were collected. A metric for the other trade parameter, ease-

of-coding, was obtained by subjectively estimating how

quickly the simulation could be coded (after becoming

proficient in each language). For instance, the Java

simulation could be coded twice as quickly as the C++

version and the Python version four times as quickly.

Figure 1. Benchmark Runtime and Coding Efficiency

Comparison for Different Computer Languages

This prior work provides a unique opportunity for Julia

runtime speed evaluation that leverages man-years of

previous work. Additional Julia benchmarks can be

performed in a “real” simulation application setting with

relatively little additional effort.

4. JULIA EXPERIMENTATION

Proficiency in Julia was a mandatory step for a fair

benchmark comparison. Of course, Julia’s home page is a

good starting point [1]. Besides the official documentation,

the author found several useful learning and reference aids.

The “wikibook” Introducing Julia [13] has a convenient

hyper-linked table of contents. Although the online book

Julia Tutorial [14] is intended as an introductory tutorial for

university students, it succinctly shows advanced aspects of

the language. Finally, the author found the Julia “cheat

sheet” [15] ever useful. These were the first steps to

become familiar with the language and to proficiently utilize

its features and idioms.

Once coding begins, two distinctly different approaches can

be taken to build a Julia MR simulation: translation versus

refactoring. The translation approach is it sounds - an

attempt at a line-to-line conversion. Baker [16] is an early

example of this approach directed at Fortran programmers

learning C. C programming macros are used to replicate

Fortran indexing (starting with 1 instead of 0) and looping

in C in an attempt to preserve Fortran programming idioms

in C. The more well-known Bell Laboratories f2c [17]

mechanizes the translation. The translation approach was

NOT adopted to create the Julia MR code for

benchmarking. This build process would, in essence,

handicap the Julia code since the Julia language features and

programming constructs would not be fully used (if at all).

Thus effort to become proficient in Julia programming was

critical to the integrity of a fair benchmark.

A refactoring approach was implemented to build a Julia

MR from “the-ground-up.” Julia is not strictly object-

oriented but provides mechanisms for an object-oriented

approach [1, Composite Types]. For instance, Julia

functions are not bundled with the data they operate on - a

common object-oriented characteristic. But, on the other

hand, multiple dispatch capability is provided so that

functions with the same name can be chosen based on the

number-of and types of the calling arguments. Julia also

provides extensive support for composite types (records and

structs in other languages). Both these attributes are

commonly associated with object-oriented languages.

Coding focused on utilization of the organic Julia constructs

to build a “native” Julia simulation as opposed to a

translation.

Before building the Julia MR itself, three major

infrastructure parts were built and tested independently,

partly for familiarization, but mostly to build a solid

simulation infrastructure foundation with respect to speed

and functionality. The three parts were the DE engine, table

look-up utilities, and vector/matrix manipulations. These

parts are integral to all flight simulations. Some code

excerpts are shown to highlight the ability to construct very

concise, readable Julia code for these functional pieces.

The DE engine is the critical piece since it is the simulation

executive. The DE engine is the code that orchestrates

 4

execution of the integrating time loop, successively

processing and propagating state vectors defined by the

flight model objects. The same DE engine structure used in

the C++, Java, and Python MR simulations was used as the

pattern for the Julia code. A code excerpt illustrating DE

engine usage is shown in Figure 2. Notably, the 4th order

Runge-Kutta integrator functions and states are

encapsulated as integrator objects.

Figure 2. Julia MR Differential Equation Engine

Representation in Main Program

Interacting with the DE engine, all simulation entities are a

hierarchy of objects including the clock, integrators, tables,

rocket stages, and the full-up rocket itself. Figure 3 shows a

portion of the simulation object composition, starting with

creation of an atmosphere object. Three stage objects are

established, where their underlying physical characteristics

are read from data files at object creation. The stage objects

are then collected into a rocket object where they are

executed sequentially by the DE engine.

Figure 3. MR Simulation Object Composition

Table look-ups and associated utilities were the second

simulation infrastructure piece studied for development.

Tables of the physical data are called throughout the

simulation and are a major influence on runtime efficiency.

An object-oriented paradigm was used to create a very

usable programming interface for the simulation coder as

shown by the code excerpt in Figure 4. Note multiple

dispatch in interpolating the thrust, txv, and axial drag

coefficient, ca_off. The same interp function is used, but

the call is dispatched to the correct function based on the

table dimension. Features like this ease the programming

burden.

Figure 4. Object-Oriented Paradigm to Create and

Access Tabular Data

The third critical infrastructure piece, vector and matrix

support, needed no code development. Julia has excellent

native linear algebra functionality. Vectors (and matrices)

are manipulated in an intuitive fashion within Julia in an

object-oriented manner. In addition to (and as part of) its

support for multi-dimensional arrays, Julia provides native

implementations of many common and useful linear algebra

operations that are supported with LAPACK [18] for its

more advanced functions.

Extensive experimentation with coding techniques and

structures to leverage Julia features was conducted with

emphasis on code readability and then timing. Benchmark

timing studies were conducted with the DE engine and table

elements to understand optimum Julia coding practice for

speed. For instance, multiple independent 2nd order

transfer functions were run in parallel to prototype different

DE engine Julia coding patterns. Large-scale table lookup

benchmarks were conducted to optimize speed. Very

importantly, readability was never sacrificed for speed in the

final versions of these critical simulation elements. If a

choice had to be made between speed and readability, the

latter was always favored.

This familiarization process and incremental simulation

build-up was invaluable for its discoveries. After much

experimentation, the final Julia code could be made to

execute approximately half as fast as equivalent C++ code

for DE engine and table look-up benchmarks. Speed tips for

Julia are well documented [19]. Some of the most important

tips for speed, verified by experimentation, were no globals,

liberal use of type declarations, and to avoid changing the

type of a variable. All of these tips were observed to

provide significant speed-up. One critical speed factor that

was not cited in the Julia documentation was to use as

“flat”, or in-line, of an architecture as possible. In other

words, underlying functions were nested as shallowly as

possible without sacrificing modularity. For instance, the

integrator objects for the MR states were defined and used

in the main program instead of, perhaps more logically,

embedding them in the models. Moving the integrator

objects to the main DE engine loop and propagating them

there (see Figure 2) significantly reduced runtime. A

previous version involved calling each of the model objects

and propagating their integrators there and was much

slower. Thus, Julia’s speed was found to be highly

dependent on knowledge of detailed operational aspects of

the language. This was observed in these pre-MR

simulation development experiments and later confirmed

 5

with the full-up simulation. Thus, Julia’s ease-of-coding

might be somewhat offset by required knowledge of

particular coding constructs and practices.

A Julia MR, conforming to an OSK architecture, was built

using the “lessons-learned” from building and

benchmarking the infrastructure parts. The final preparation

step was to ensure that the Julia simulation agreed with

previous ones. The same trajectory as before was used.

Trajectory details are summarized in Table 3. This

trajectory was selected to exercise the missile dynamics in

all channels (pitch and yaw, as well as axial) in order to

“touch” all the objects’ math models code.

Table 3. Benchmark Trajectory Details for a

Hypothetical Rocket

Trajectory Description

 3-stage hypothetical rocket

 vertical launch with pitch-over

 rotating earth

 pre-programmed maneuver in pitch and yaw channels

(case chosen to fully exercise steering code in pitch

and yaw)

 flight time = 100 sec

 stage splits = 40, 75 at 2708, 6790 m/sec

 final velocity = 6574 m/sec at t = 100 sec

Numerically, all the C++, Java, Python, and Julia results

were very nearly identical. A trajectory overlay from all

four MR simulations is shown in Figure 5. No difference is

discernible.

Figure 5. Trajectories For All Four Benchmark

Simulations

Thus the stage was set for a fair benchmark comparison.

5. BENCHMARK RESULTS

Before assessing timing results, it was informative to collect

lines-of-code (LOC) and compare them since all the models

were coded conforming to the same OSK architecture. Table

4 decomposes the LOC count to the simulation

infrastructure functions described earlier. In a sense, LOC

could be one metric to judge coding efficiency. Note that

no code had to be written for the Julia simulation’s vector

utilities since this functionality was built-in. On a similar

note, no external vector libraries were used for the other

languages so code had to be written for these. For instance,

numpy [20] could have been used in-lieu of the natively-

coded vector utilities in Python. For this reason, and to

facilitate a more fair comparison, lines-of-code totals are

shown with and without the vector code for C++, Java, and

Python. Along these lines, it is important to note that the

speed of the C++, Java, and Python MR versions might have

benefitted from using external libraries. External libraries

were not used since they are not a native part of these

languages. Another biasing factor in favor of Julia was that

the DE engine’s integrators were propagated in the main

program (as discussed earlier) which slightly altered the

code architecture of the DE engine. In a similar manner as-

before, LOC are shown without the DE engine to reflect this

alteration in the Julia code. A related metric would be

characters-of-code. Julia characters-of-code could have

been greatly reduced without specifying types (at cost of

great speed penalty and code readability as described

earlier). These differences and evaluation criteria are

indications of the difficult nature of benchmarking.

Table 4. Lines-of-Code Comparison

Simulation

Function
C++ Java Python Julia

DE Engine 360 310 227 98

rocket model 830 753 596 613

vector utilities 533 524 351 0

table utilities 650 384 252 165

misc. utilities 104 153 64 82

Total (all) 2477 2124 1490 958

Total (less

vector utilities)
1944 1600 1139 958

Total (less

vector

utilities& DE

engine)

1584 1290 912 860

Table 5 provides details on the computer used for the

benchmark. A relatively powerful computer (speed and

memory) was used to limit the possibility that performance

for any particular simulation would be influenced by

hardware limits. The cores were not utilized. No special

code was written in any of the MR versions to take

advantage of the underlying cores to avoid the particulars of

any of the languages’ core utilization affecting the results.

 6

Table 5. Benchmark Computational Hardware

Category Description

Operating

System Windows 10

Model
 Dell Precision 7820, Wintel High

Performance Dual Socket Engineering

Workstation

CPU
 Intel Xeon Gold 6130 CPU @

2.10GHz (2 processors, 32 cores, 64

threads)*

Processing single-thread processing used for

these runs
*each CPU has 16 cores, each core has 2 hyper-threads

Table 6 documents the language versions. Again, only the

standard distributions of these compilers (and interpreter)

were used; no numeric or vector libraries were added.

Table 6. Language Version

Language Version

C++ Borland 5.5

Java 12.0.1

Python 2.7.16

Julia 1.1.1

Table 7 summarizes the principle results of the benchmark

experiment. For convenience-of-interpretation, the times

are normalized to the C++ (fastest) MR version. Initial data

file reading and preprocessing were not included in the

timing loop; timing profile code was wrapped only around

the integrating time loop within the DE engine (see code in

Figure 2). The very small amount of screen output was

redirected to a buffered file (solid state drive) and no

explicit compiler optimization flags were used for C++ and

Java.

Table 7. Benchmark Results*

 1 run 10 runs 100 runs

C++ 0.125 (1.00) 0.126 (1.01) 0.127 (1.02)

Java 0.169 (1.35) 0.139 (1.11) 0.099 (0.79)

Python 3.765 (30.12) 3.752 (30.02) 3.762 (30.10)

Julia 1.470 (11.76) 0.378 (3.02) 0.269 (2.15)

* normalized times in parentheses

Since Java and Julia use a Just-In-Time Compiler (JIT), sets

of 10 and 100 runs were conducted to successively diminish

the effect that the JIT compile time might have on the

benchmark. As expected, Java and Julia got better with

more runs (Julia more so than Python). It is speculated that

both the Java and Julia JIT compilers got better at

optimizing with more runs (or at least the compile time’s

share of total runtime was diminished with more runs). It is

interesting to note that Java speed approached, or even

exceeded, C++ for a large number of runs. The C++ and

Python results (relative to each other) were the same as

those found previously (see Fig. 1).

A language’s utility for simulation cannot be best evaluated

considering only runtime in isolation. As with the previous

benchmark presentation (see Fig. 1), “coding efficiency”

was considered adding a second dimension in the language

evaluation metric. Recognizing the subjectivity of this

metric, the question was asked, “How easy was it to code a

working simulation?” The prominent role of the up-front

experimentation provided experience to fairly address this

question.

Figure 6 portrays the data in Table 7 against a “speed-of-

coding” axis. Again, the coding efficiency was highly

subjective based on prior experience in the general time

required to stand-up a simulation. While the scripting

language characteristics of Julia definitely expedited coding

speed, it was definitely more difficult than Python owing to

the speed-critical coding knowledge described earlier.

Consequently, the Julia speed-of-coding metric was judged

to be less than Python, but still greater than Java.

Figure 6. Benchmark Results With Coding Efficiency

Dimension Added

 7

Although not within the scope of this benchmark study, it

was noted how easy it is to extend Julia execution for

parallel processing on multiple threads. The Julia

Distributed package [1, Distributed Computing] adds

functionality to extend the single execution thread used up-

until-now to multiple threads. The benchmark computer had

64 threads (Table 5). Kaminski and Szufel [21] provide

very simple code that can be executed interactively to

execute Julia scripts concurrently. This interactive command

set was used to execute 65 MR runs concurrently (a master

process and its 64 worker processes). Runtime results are

shown in Table 8. It should be noted that easily-accessible

multi-thread computing is not exclusive to Julia; the author

has used the Python multiprocessing package [22] with

equal success. Along the lines of parallel computing, Julia

provides simplified access to any Graphical Processing

Units (GPUs) that are available [23]. However, GPUs seem

best suited for simple repetitive computation (over grids, for

example) and do not seem suitable for the flight simulation-

type calculations studied here.

Table 8. Multi-Thread Benchmark Results

Configuration

concurrent

runs

Time

(sec)

Time/run

(sec)

1 run/thread 65 3.00 0.0460

10 runs/ thread 650 7.63 0.0117

100 runs/ thread 6500 53 0.00815

1000 runs/ thread 65000 525 0.00808

6. CONCLUSIONS

Challenges still exist in providing the tools and environment

for quickly and efficiently constructing dynamical system

simulations that address every step in the missile simulation

life cycle. The potential contribution of Julia is to give

“non-expert” coders (scripters) the ability to build high

performance simulations. Julia was well suited to coding

the object-oriented structure in MR with an exceptional

economy-of-code.

Julia execution speed was much faster than Python but still

slower than C++ and Java. Julia speed was found to be

highly dependent on knowledge of detailed operational

aspects of the language. This was observed in the pre-

simulation development experiments and confirmed with

the full-up simulation. Thus Julia’s ease-of-coding might be

somewhat offset by required knowledge of particular coding

constructs and practices. Also, Julia’s JIT compiler

becomes more efficient with multiple run execution. This is

why the multiple run experiment design was an important

benchmarking activity.

The economy of Julia to express complex programming

constructs makes it attractive as a simulation experiment

“testbed” for prototyping any future simulation applications.

Although only touched upon in these results, parallel

computing capability and its application to time-domain

dynamic system simulations is especially compelling for

further flight simulation research.

REFERENCES

[1] Julia language website: Julia.org.

[2] D. Bagley, “The Great Win32 Computer Language

Shootout,” http://dada.perl.it/shootout/

[3] “The Computer Language Benchmarks Game”:

https://benchmarksgame-

team.pages.debian.net/benchmarksgame

[4] J. Kouatchou, “NASA modeling guru,”

https://modelingguru.nasa.gov/docs/DOC-2676

[5] Mad Data Scientist:

https://matloff.wordpress.com/2014/05/21/r-beats-

python-r-beats-julia-anyone-else-wanna-challenge-

r/comment-page-1/

[6] D. Eadline, “Dirt Simple HPC,”

https://www.nextplatform.com/2016/01/26/dirt-

simple-hpc-making-the-case-for-julia/

[7] D. Gutierrez, “Julia: A High-Level Language for

Supercomputing,”

https://insidebigdata.com/2017/09/06/julia-high-level-

language-supercomputing-big-data/

[8] Sells, R. and Sanders, G., “Mini-Rocket User Guide,”

U.S. Army Technical Report AMR-SS-07-27, [online

archive] URL:

http://www.dtic.mil/dtic/tr/fulltext/u2/a472173.pdf

[9] Open-Source: A Mechanism for Advancing

Simulation State-of-the-Art Principles,” Technology

Alabama Magazine, Fall 2005, p. 11.

[10] R.C. Hibbeler, Engineering Mechanics: Statics and

Dynamics, Macmillan Publishing Co., Inc., New York,

pg. 473,1974.

[11] Sells, H.R., Sanders, G., and Saylor, R., “An Object-

Oriented Simulation Kernel for a Large Spectrum of

Simulations,” Summer Computer Simulation

Conference, Society for Computer Simulation, 2006,

Calgary, Alberta.

[12] Sells, R., “A Code Architecture to Streamline the

Missile Simulation Life Cycle,” SciTech 2107 –

Modeling and Simulation Technologies Conference,

AIAA, Grapevine, TX, January 12, 2017.

[13] Introducing Julia, on-line book:

https://en.wikibooks.org/wiki/Introducing_Julia

[14] J. Fernández-Villaverde, Julia Tutorial,

https://www.sas.upenn.edu/~jesusfv/Chapter_HPC_8_

Julia.pdf

[15] “The Fast Track to Julia,”

https://juliadocs.github.io/Julia-Cheat-Sheet/

[16] L. Baker, C Tools for Scientists and Engineers,

McGraw Hill, New York, 1989.

[17] f2c wiki: https://en.wikipedia.org/wiki/F2c

 8

[18] LAPACK website: http://www.netlib.org/lapack/

[19] “Julia Performance Tips,”

https://docs.julialang.org/en/v1/manual/performance-

tips/index.html

[20] Numpy: numpy.org

[21] Kaminski, B. and Szufel, P., Julia 1.0 Programming

Cookbook, Packt, Birmingham, 2018, pg. 35.

[22] “multiprocessing — Process-based “threading”

interface”:

https://docs.python.org/2/library/multiprocessing.html

[23] S. Danisch,” An Introduction to GPU Programming in

Julia,” https://nextjournal.com/sdanisch/julia-gpu-

programming.

BIOGRAPHY

Ray Sells received B.S. and M.S. degrees

in Mechanical Engineering from

Tennessee Technological University in

1980 and 1981. He currently is Vice

President of Advanced Technology at

DESE Research, Inc. where he is

principally engaged in next-generation

tactical missile system technology exploration and

development. He has authored numerous publications in

the diverse areas of thermal analysis, large-scale shock

isolation systems, missile autopilots and guidance laws,

simulation architectures, embedded software, data

visualization, genetic algorithms, and missile defense system

operations research. He is currently supporting the NASA

Space Launch System Flight Dynamics team at MSFC.

