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Abstract—Julia’s goal to provide scripting language ease-of-

coding with compiled language speed is explored.  The runtime 

speed of the relatively new Julia programming language is 

assessed against other commonly used languages including 

Python, Java, and C++.  An industry-standard missile and 

rocket simulation, coded in multiple languages, was used as a 

test bench for runtime speed.  All language versions of the 

simulation, including Julia, were coded to a highly-developed 

object-oriented simulation architecture tailored specifically for 

time-domain flight simulation.  A “speed-of-coding” second-

dimension is plotted against runtime for each language to 

portray a space that characterizes Julia’s scripting language 

efficiencies in the context of the other languages. With caveats, 

Julia runtime speed was found to be in the class of compiled or 

semi-compiled languages.  However, some factors that affect 

runtime speed at the cost of ease-of-coding are shown. Julia’s 

built-in functionality for multi-core processing is briefly 

examined as a means for obtaining even faster runtime speed.  

The major contribution of this research to the extensive 

language benchmarking body-of-work is comparing Julia to 

other mainstream languages using a complex flight simulation 

as opposed to benchmarking with single algorithms. 
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1. INTRODUCTION 

Julia [1] is a relatively new computer language that aims to 

reduce the challenge for math-modelers to develop fast 

computer tools and simulations. It potentially combines the 

ease-of-coding feature of scripting languages (like Python) 

with the performance of compiled languages (like C++).  

Normally, these two features are mutually exclusive with 

existing, conventional programming languages.   Julia’s 

ease-of-coding principally derives from its dynamic typing 

feature, where data are inferred “on-the-fly” without the 

necessity (code and complexity) for static data declaration.  

The dynamic feature is most commonly associated with 

scripting languages.  Syntactically, Julia somewhat 

resembles Python, but is not meant to be a “compiled 

Python.”  A key question for Julia application to the 

simulation domain is, “Can Julia, with its obvious coding 

simplicity, attain runtime speeds comparable to 

conventional compiled languages for flight simulation?” 

A wide body of literature exists for Julia benchmarking.  

Benchmarking is not as objective as many would accept it to 

be.  For instance, benchmarks between different languages 

can be masked or misleading due to inconsistent code 

architecture or different styles of coding.  Also, it is a 

coder’s prerogative on how to utilize a language’s features 

for a particular problem.  The literature contains many 

excellent language benchmarking sources that recognize the 

subjectivity of benchmarking and attempt to address it in a 

fair manner.  One of the original and most prominent 

benchmarks was performed by Bagley [2].  A wide variety 

of languages (but not Julia) were benchmarked across 

several code tests.  The code tests were comprised of 

algorithms spanning a wide domain of operation from 

sorting, string manipulation, floating point computations, 

and hashes, among many others.  Notably, the source code 

is included for all tests (in all languages).  Following in this 

pattern, The Computer Language Benchmarks Game [3] is a 

more recent and similar presentation that includes Julia.  

Notably, multiple code submissions for a benchmark in the 

same language from different contributors are catalogued in 

a fair attempt to capture code with the fastest speed.  

Kouatchou (the “NASA Modeling Guru”) [4] maintains a 

comprehensive set of benchmark results where the 

algorithm tests tend more exclusively toward a scientific 

interest.  This is reflected in the languages tested including 

Python, Julia, Matlab, and R.  R Beats Python! [5] is an 

example of how benchmarks can be interpreted differently. 

Some “unfair timing comparisons” by “the Julia group” are 

contested because the “R code was not vectorized.” A 

takeaway from this body-of-work review, fairness not 

withstanding, is that most of the benchmarks were 

characterized by single algorithms being executed in tight 

loops.  While these benchmarks are certainly informative for 

flight simulation coding, extrapolation of their results to 

large scale flight simulation execution speed is not 

straightforward.  
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Beyond basic algorithmic benchmarks, the literature 

contains several favorable Julia benchmarks for problem 

domains easily vectorized, like “field” problems for 

numerical solution of partial differential equations.  These 

type of computations are typically found in the high speed 

computing domain. Eadline [6] makes the case for Julia as 

an ideal solution for this type of computing.  Gutierrez [7] 

emphasizes Julia’s built-in primitives for parallel computing 

including vectorization.  However, flight simulations 

typically involve the execution of sequentially-dependent 

calculations inside a state-propagation loop.  This type of 

computation does not lend itself well to vectorization. 

Consequently, the literature review for Julia benchmarking 

revealed a gap in addressing Julia for time-domain, lumped-

element dynamic computations typical for flight simulation.  

This paper begins describing how a unique combination of 

existing elements have been employed to address this 

relatively sparse area of the Julia benchmark research.  An 

extensively documented object-oriented simulation 

architecture, its implementation in an industry standard 

rocket flight simulation, and separate versions (C++, Java, 

and Python) provide the setting for a comparative evaluation 

of Julia runtime speed (and ease of coding).  This 

combination of existing elements avoids a common pitfall 

of benchmarks:   Benchmarks between different languages 

can be masked or misleading due to inconsistent code 

architecture or different styles of coding.  Thus, a common 

architecture and flight application provides for an accurate 

and fair comparison.   

Execution speeds for a Julia-version of the rocket simulation 

are presented for a variety of runtime scenarios including 

single-run and various increments of “batch” runs 

comprised of several executions.  These are compared 

against their C++, Java, and Python simulation counterparts.  

Recognizing runtime speed must be examined in the larger 

context of ease-of-coding, metrics for the relationship 

between these two criteria are shown for each of the 

language implementations.  A comparison of lines-of-code 

is included, for instance.  Also, key Julia benchmark caveats 

are noted that reflect a usability and runtime speed tradeoff. 

The paper concludes with a brief experiment addressing 

Julia runtime speed in a multi-core, parallel computing 

context.  Although not in the original scope of this research, 

Julia makes parallel computation very accessible to 

simulation practitioners without requiring a high degree of 

computer expertise.  In keeping with the objective to 

achieve high runtime speed complemented with easy 

coding, Julia parallel computation was briefly explored with 

independent rocket simulations executing on multiple cores. 

2. BENCHMARK DESCRIPTION 

Aerospace flight simulation is a large domain within the 

digital simulation world and a large potential audience for 

Julia application.  Within this domain, it was recognized that 

a simulation for experimentation was available.  The Mini-

Rocket simulation [8] is coded in several language versions 

which are in active use.  Mini-Rocket is open-source [9]. 

Mini-Rocket (MR) is a very easy-to-configure, multiple 

degree-of-freedom missile and rocket fly-out model that 

accurately generates trajectories in three-dimensional space, 

including maneuver characteristics. It features a unique 

algorithm that accurately models missile dynamics at a 

fraction of the computational cost of conventional six 

degree-of-freedom simulations while maintaining a 

significant amount of the fidelity. The program is ideal for 

those analyses requiring trajectory modeling without the 

necessity of detailed modeling of the onboard missile 

subsystems.  Some of its more detailed features are 

summarized in Table 1.   

Table 1. Mini-Rocket Features 

Feature 

 Osculating-plane formulation [10] reduces compute-

time overhead of full six degree-of-freedom equations-

of-motion 

 Motion in three-dimensional space 

 Two independent channels (pitch and yaw) for steering 

and guidance 

 1, 2, and 3-dimensional table lookups to model 

aerodynamics and propulsion characteristics 

 Capability to model angle-of-attack variations in lift 

and drag 

 Constraints on lateral acceleration based on angle-of-

attack and closed-loop airframe response time 

 Detailed models for control and guidance subsystems 

not required 

 

Key to this benchmark, all language versions of MR have 

been coded to the same object-oriented architecture.  An 

object-oriented simulation kernel (OSK) [11]  successively 

executes sequences of model objects inside a differential 

equation (DE) engine.  A long, traceable heritage of 

comparisons exists to establish the accuracy of the MR 

model and coding mechanizations [8, Section 5] in its 

different language instantiations. 

3. PRIOR FINDINGS 

The C++, Java, and Python MR simulations have been 

previously benchmarked [12].  It is informative to review 

those findings here before proceeding.  The OSK 

architecture was used to build simulation engines in C++, 

Java, and Python owing to unique user and stakeholder 

requirements that had a language preference. Also, these 

languages span a range of syntax simplicity versus runtime 

speed and they are all object-oriented.  Key features of each 

language are shown in Table 2.  This was a good 

opportunity to explore different facets of the languages as 

their functionality was expressed in different ways to build 

MR. 
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Table 2. Key Characteristics of Benchmark Languages 

Language Characteristic 

C++ 

 Fast Execution 

 Most syntactically complex 

 Object-Oriented 

Java 

 Simpler syntax 

 Compiles to slower byte-code, but still 

fast 

 Object-oriented 

Python 

 Most syntactically concise, easiest to 

code 

 Interpreted – no need for compilation 

but slower execution 

 Dynamic-typing reduces lines of code 

 Object-oriented 

 

Figure 1 illustrates the trade between these languages for 

MR.  Identical MR models, in the sense of having the same 

math models and coding architecture, were executed to 

generate a representative trajectory.  Runtime speed results 

were collected. A metric for the other trade parameter, ease-

of-coding, was obtained by subjectively estimating how 

quickly the simulation could be coded (after becoming 

proficient in each language).  For instance, the Java 

simulation could be coded twice as quickly as the C++ 

version and the Python version four times as quickly. 

 
Figure 1. Benchmark Runtime and Coding Efficiency 

Comparison for Different Computer Languages 

This prior work provides a unique opportunity for Julia 

runtime speed evaluation that leverages man-years of 

previous work.  Additional Julia benchmarks can be 

performed in a “real” simulation application setting with 

relatively little additional effort. 

4. JULIA EXPERIMENTATION 

Proficiency in Julia was a mandatory step for a fair 

benchmark comparison.  Of course, Julia’s home page is a 

good starting point [1]. Besides the official documentation, 

the author found several useful learning and reference aids. 

The “wikibook” Introducing Julia [13] has a convenient 

hyper-linked table of contents.  Although the online book 

Julia Tutorial [14] is intended as an introductory tutorial for 

university students, it succinctly shows advanced aspects of 

the language.  Finally, the author found the Julia “cheat 

sheet” [15] ever useful.  These were the first steps to 

become familiar with the language and to proficiently utilize 

its features and idioms.  

Once coding begins, two distinctly different approaches can 

be taken to build a Julia MR simulation:  translation versus 

refactoring. The translation approach is it sounds - an 

attempt at a line-to-line conversion.  Baker [16] is an early 

example of this approach directed at Fortran programmers 

learning C. C programming macros are used to replicate 

Fortran indexing (starting with 1 instead of 0) and looping 

in C in an attempt to preserve Fortran programming idioms 

in C.  The more well-known Bell Laboratories f2c [17] 

mechanizes the translation.  The translation approach was 

NOT adopted to create the Julia MR code for 

benchmarking.  This build process would, in essence, 

handicap the Julia code since the Julia language features and 

programming constructs would not be fully used (if at all).  

Thus effort to become proficient in Julia programming was 

critical to the integrity of a fair benchmark. 

A refactoring approach was implemented to build a Julia 

MR from “the-ground-up.”  Julia is not strictly object-

oriented but provides mechanisms for an object-oriented 

approach [1, Composite Types].  For instance, Julia 

functions are not bundled with the data they operate on - a 

common object-oriented characteristic.  But, on the other 

hand, multiple dispatch capability is provided so that 

functions with the same name can be chosen based on the 

number-of and types of the calling arguments.  Julia also 

provides extensive support for composite types (records and 

structs in other languages).  Both these attributes are 

commonly associated with object-oriented languages.  

Coding focused on utilization of the organic Julia constructs 

to build a “native” Julia simulation as opposed to a 

translation. 

Before building the Julia MR itself, three major 

infrastructure parts were built and tested independently, 

partly for familiarization, but mostly to build a solid 

simulation infrastructure foundation with respect to speed 

and functionality.  The three parts were the DE engine, table 

look-up utilities, and vector/matrix manipulations.  These 

parts are integral to all flight simulations.  Some code 

excerpts are shown to highlight the ability to construct very 

concise, readable Julia code for these functional pieces. 

The DE engine is the critical piece since it is the simulation 

executive.  The DE engine is the code that orchestrates 
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execution of the integrating time loop, successively 

processing and propagating state vectors defined by the 

flight model objects.  The same DE engine structure used in 

the C++, Java, and Python MR simulations was used as the 

pattern for the Julia code.  A code excerpt illustrating DE 

engine usage is shown in Figure 2.  Notably, the 4th order 

Runge-Kutta integrator functions and states are 

encapsulated as integrator objects. 

 
Figure 2.  Julia MR Differential Equation Engine 

Representation in Main Program 

Interacting with the DE engine, all simulation entities are a 

hierarchy of objects including the clock, integrators, tables, 

rocket stages, and the full-up rocket itself.  Figure 3 shows a 

portion of the simulation object composition, starting with 

creation of an atmosphere object.  Three stage objects are 

established, where their underlying physical characteristics 

are read from data files at object creation.  The stage objects 

are then collected into a rocket object where they are 

executed sequentially by the DE engine. 

 
Figure 3.  MR Simulation Object Composition 

Table look-ups and associated utilities were the second 

simulation infrastructure piece studied for development. 

Tables of the physical data are called throughout the 

simulation and are a major influence on runtime efficiency.  

An object-oriented paradigm was used to create a very 

usable programming interface for the simulation coder as 

shown by the code excerpt in Figure 4.  Note multiple 

dispatch in interpolating the thrust, txv, and axial drag 

coefficient, ca_off.  The same interp function is used, but 

the call is dispatched to the correct function based on the 

table dimension.  Features like this ease the programming 

burden. 

 
Figure 4.  Object-Oriented Paradigm to Create and 

Access Tabular Data 

The third critical infrastructure piece, vector and matrix 

support, needed no code development.  Julia has excellent 

native linear algebra functionality.  Vectors (and matrices) 

are manipulated in an intuitive fashion within Julia in an 

object-oriented manner. In addition to (and as part of) its 

support for multi-dimensional arrays, Julia provides native 

implementations of many common and useful linear algebra 

operations that are supported with LAPACK [18] for its 

more advanced functions. 

Extensive experimentation with coding techniques and 

structures to leverage Julia features was conducted with 

emphasis on code readability and then timing.  Benchmark 

timing studies were conducted with the DE engine and table 

elements to understand optimum Julia coding practice for 

speed.  For instance, multiple independent 2nd order 

transfer functions were run in parallel to prototype different 

DE engine Julia coding patterns.  Large-scale table lookup 

benchmarks were conducted to optimize speed.  Very 

importantly, readability was never sacrificed for speed in the 

final versions of these critical simulation elements. If a 

choice had to be made between speed and readability, the 

latter was always favored. 

This familiarization process and incremental simulation 

build-up was invaluable for its discoveries.  After much 

experimentation, the final Julia code could be made to 

execute approximately half as fast as equivalent C++ code 

for DE engine and table look-up benchmarks.  Speed tips for 

Julia are well documented [19].  Some of the most important 

tips for speed, verified by experimentation, were no globals, 

liberal use of type declarations, and to avoid changing the 

type of a variable.  All of these tips were observed to 

provide significant speed-up.  One critical speed factor that 

was not cited in the Julia documentation was to use as 

“flat”, or in-line, of an architecture as possible.  In other 

words, underlying functions were nested as shallowly as 

possible without sacrificing modularity.  For instance, the 

integrator objects for the MR states were defined and used 

in the main program instead of, perhaps more logically, 

embedding them in the models.  Moving the integrator 

objects to the main DE engine loop and propagating them 

there (see Figure 2) significantly reduced runtime.  A 

previous version involved calling each of the model objects 

and propagating their integrators there and was much 

slower.  Thus, Julia’s speed was found to be highly 

dependent on knowledge of detailed operational aspects of 

the language.  This was observed in these pre-MR 

simulation development experiments and later confirmed 
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with the full-up simulation.  Thus, Julia’s ease-of-coding 

might be somewhat offset by required knowledge of 

particular coding constructs and practices.   

A Julia MR, conforming to an OSK architecture, was built 

using the “lessons-learned” from building and 

benchmarking the infrastructure parts. The final preparation 

step was to ensure that the Julia simulation agreed with 

previous ones.  The same trajectory as before was used.  

Trajectory details are summarized in Table 3.  This 

trajectory was selected to exercise the missile dynamics in 

all channels (pitch and yaw, as well as axial) in order to 

“touch” all the objects’ math models code. 

Table 3.  Benchmark Trajectory Details for a 

Hypothetical Rocket 

Trajectory Description 

 3-stage hypothetical rocket 

 vertical launch with pitch-over 

 rotating earth 

 pre-programmed maneuver in pitch and yaw channels 

(case chosen to fully exercise steering code in pitch 

and yaw) 

 flight time = 100 sec 

 stage splits = 40, 75 at 2708, 6790 m/sec 

 final velocity = 6574 m/sec at t = 100 sec 

 
Numerically, all the C++, Java, Python, and Julia results 

were very nearly identical.  A trajectory overlay from all 

four MR simulations is shown in Figure 5.  No difference is 

discernible. 

 
Figure 5.  Trajectories For All Four Benchmark 

Simulations 

Thus the stage was set for a fair benchmark comparison. 

 

5. BENCHMARK RESULTS 

Before assessing timing results, it was informative to collect 

lines-of-code (LOC) and compare them since all the models 

were coded conforming to the same OSK architecture. Table 

4 decomposes the LOC count to the simulation 

infrastructure functions described earlier.  In a sense, LOC 

could be one metric to judge coding efficiency.  Note that 

no code had to be written for the Julia simulation’s vector 

utilities since this functionality was built-in.  On a similar 

note, no external vector libraries were used for the other 

languages so code had to be written for these.  For instance, 

numpy [20] could have been used in-lieu of the natively-

coded vector utilities in Python.  For this reason, and to 

facilitate a more fair comparison, lines-of-code totals are 

shown with and without the vector code for C++, Java, and 

Python.  Along these lines, it is important to note that the 

speed of the C++, Java, and Python MR versions might have 

benefitted from using external libraries.  External libraries 

were not used since they are not a native part of these 

languages.  Another biasing factor in favor of Julia was that 

the DE engine’s integrators were propagated in the main 

program (as discussed earlier) which slightly altered the 

code architecture of the DE engine.   In a similar manner as-

before, LOC are shown without the DE engine to reflect this 

alteration in the Julia code. A related metric would be 

characters-of-code.  Julia characters-of-code could have 

been greatly reduced without specifying types (at cost of 

great speed penalty and code readability as described 

earlier). These differences and evaluation criteria are 

indications of the difficult nature of benchmarking. 

Table 4. Lines-of-Code Comparison 

Simulation 

Function 
C++ Java Python Julia 

DE Engine 360 310 227 98 

rocket model 830 753 596 613 

vector utilities 533 524 351 0 

table utilities 650 384 252 165 

misc. utilities 104 153 64 82 

Total (all) 2477 2124 1490 958 

Total (less 

vector utilities) 
1944 1600 1139 958 

Total (less 

vector 

utilities& DE 

engine) 

1584 1290 912 860 

 
Table 5 provides details on the computer used for the 

benchmark.  A relatively powerful computer (speed and 

memory) was used to limit the possibility that performance 

for any particular simulation would be influenced by 

hardware limits.  The cores were not utilized. No special 

code was written in any of the MR versions to take 

advantage of the underlying cores to avoid the particulars of 

any of the languages’ core utilization affecting the results. 
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Table 5. Benchmark Computational Hardware 

Category Description 

Operating 

System  Windows 10 

Model 
 Dell Precision 7820, Wintel High 

Performance Dual Socket Engineering 

Workstation 

CPU 
 Intel Xeon Gold 6130 CPU @ 

2.10GHz (2 processors, 32 cores, 64 

threads)* 

Processing  single-thread processing used for 

these runs 
*each CPU has 16 cores, each core has 2 hyper-threads 

 
Table 6 documents the language versions.  Again, only the 

standard distributions of these compilers (and interpreter) 

were used; no numeric or vector libraries were added. 

Table 6. Language Version 

Language Version 

C++ Borland 5.5 

Java 12.0.1 

Python 2.7.16 

Julia 1.1.1 

 

Table 7 summarizes the principle results of the benchmark 

experiment.  For convenience-of-interpretation, the times 

are normalized to the C++ (fastest) MR version.  Initial data 

file reading and preprocessing were not included in the 

timing loop; timing profile code was wrapped only around 

the integrating time loop within the DE engine (see code in 

Figure 2).  The very small amount of screen output was 

redirected to a buffered file (solid state drive) and no 

explicit compiler optimization flags were used for C++ and 

Java.   

Table 7. Benchmark Results* 

 1 run 10 runs 100 runs 

C++ 0.125 (1.00) 0.126 (1.01) 0.127 (1.02) 

Java 0.169 (1.35) 0.139 (1.11) 0.099 (0.79) 

Python 3.765 (30.12) 3.752 (30.02) 3.762 (30.10) 

Julia 1.470 (11.76) 0.378 (3.02) 0.269 (2.15) 

* normalized times in parentheses 

 
Since Java and Julia use a Just-In-Time Compiler (JIT), sets 

of 10 and 100 runs were conducted to successively diminish 

the effect that the JIT compile time might have on the 

benchmark.  As expected, Java and Julia got better with 

more runs (Julia more so than Python). It is speculated that 

both the Java and Julia JIT compilers got better at 

optimizing with more runs (or at least the compile time’s 

share of total runtime was diminished with more runs).  It is 

interesting to note that Java speed approached, or even 

exceeded, C++ for a large number of runs.  The C++ and 

Python results (relative to each other) were the same as 

those found previously (see Fig. 1). 

A language’s utility for simulation cannot be best evaluated 

considering only runtime in isolation. As with the previous 

benchmark presentation (see Fig. 1), “coding efficiency” 

was considered adding a second dimension in the language 

evaluation metric.  Recognizing the subjectivity of this 

metric, the question was asked, “How easy was it to code a 

working simulation?” The prominent role of the up-front 

experimentation provided experience to fairly address this 

question. 

Figure 6 portrays the data in Table 7 against a “speed-of-

coding” axis.  Again, the coding efficiency was highly 

subjective based on prior experience in the general time 

required to stand-up a simulation.  While the scripting 

language characteristics of Julia definitely expedited coding 

speed, it was definitely more difficult than Python owing to 

the speed-critical coding knowledge described earlier.  

Consequently, the Julia speed-of-coding metric was judged 

to be less than Python, but still greater than Java. 

 
Figure 6.  Benchmark Results With Coding Efficiency 

Dimension Added 
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Although not within the scope of this benchmark study, it 

was noted how easy it is to extend Julia execution for 

parallel processing on multiple threads.  The Julia 

Distributed package [1, Distributed Computing] adds 

functionality to extend the single execution thread used up-

until-now to multiple threads. The benchmark computer had 

64 threads (Table 5).  Kaminski and Szufel [21] provide 

very simple code that can be executed interactively to 

execute Julia scripts concurrently. This interactive command 

set was used to execute 65 MR runs concurrently (a master 

process and its 64 worker processes).  Runtime results are 

shown in Table 8.  It should be noted that easily-accessible 

multi-thread computing is not exclusive to Julia; the author 

has used the Python multiprocessing package [22] with 

equal success.  Along the lines of parallel computing, Julia 

provides simplified access to any Graphical Processing 

Units (GPUs) that are available [23].  However, GPUs seem 

best suited for simple repetitive computation (over grids, for 

example) and do not seem suitable for the flight simulation-

type calculations studied here. 

Table 8. Multi-Thread Benchmark Results 

Configuration 

# 

concurrent 

runs 

Time 

(sec) 

Time/run 

(sec) 

1 run/thread 65 3.00 0.0460 

10 runs/ thread 650 7.63 0.0117 

100 runs/ thread 6500 53 0.00815 

1000 runs/ thread 65000 525 0.00808 

 

 

6. CONCLUSIONS 

Challenges still exist in providing the tools and environment 

for quickly and efficiently constructing dynamical system 

simulations that address every step in the missile simulation 

life cycle.  The potential contribution of Julia is to give 

“non-expert” coders (scripters) the ability to build high 

performance simulations.  Julia was well suited to coding 

the object-oriented structure in MR with an exceptional 

economy-of-code. 

Julia execution speed was much faster than Python but still 

slower than C++ and Java.  Julia speed was found to be 

highly dependent on knowledge of detailed operational 

aspects of the language.  This was observed in the pre-

simulation development experiments and confirmed with 

the full-up simulation.  Thus Julia’s ease-of-coding might be 

somewhat offset by required knowledge of particular coding 

constructs and practices.  Also, Julia’s JIT compiler 

becomes more efficient with multiple run execution.  This is 

why the multiple run experiment design was an important 

benchmarking activity.   

The economy of Julia to express complex programming 

constructs makes it attractive as a simulation experiment 

“testbed” for prototyping any future simulation applications.  

Although only touched upon in these results, parallel 

computing capability and its application to time-domain 

dynamic system simulations is especially compelling for 

further flight simulation research. 
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